Home
Class 12
MATHS
If A, B, C, D be the angles of a quadril...

If `A, B, C, D` be the angles of a quadrilateral, prove that : `(tanA+tanB+tanC+tanD)/(cotA+cotB+cotC+cotD) = tan A tan B tan C tan D`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A , B , C , D are the angles of a quadrilateral, then (tanA+tanB+tanC+tanD)/(cotA+cotB+cotC+cotD) is equal to: (a) tanAtanBtanCtanD (b) cotAcotBcotCcotD (c) tan^2A+tan^2B+tan^2C+tan^2D (d) sumtanAtanBtanC

If A,B,C,D are the angles of quadrilateral, then find (sum tan A)/(sum cot A).

Prove that : (cot A + tan B)/ (cot B + tan A) = cot A tan B

If A+B+C=pi , prove that : (tanA+tanB+tanC) (cotA+cotB+cotC)=1+secA secB secC .

If A ,\ B ,\ C are the interior angles of a triangle A B C , prove that tan(B+C)/2=cotA/2

In DeltaABC , prove that: tan2A + tan2B+tan2C=tan2Atan2Btan2C

(cos(A-B))/(cos(A+B))+cos(C+D)/(cos(C-D))=0 => tan A tan B tan C tan D =

Given that A = B +C. prove that tan A - tan B - tan C = tan A tan B tan C.

If A, B, C are angles of Delta ABC and tan A tan C = 3, tan B tan C = 6 , then

If A,B,C are angles of a triangle, prove that (tan (B+C)+tan(C+A)+tan(A+B))/(tan (pi-A)+tan(2pi-B)+tan(3pi-C))=1 .