Home
Class 12
MATHS
If A+B+C=pi, prove that : sin2A+sin2B+si...

If `A+B+C=pi`, prove that : `sin2A+sin2B+sin2C=4sinA sinB sinC`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

In DeltaABC , prove that: sin2A+sin2B+sin2C=4sinAsinBsinC

If A+B+C= pi/2 ,prove that: sin2A-sin2B+sin2C=4sinAcosBsinC

In DeltaABC ,prove that: sin2A + sin2B-sin2C=4cosA cosB sinC

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sin(A/2) sin(B/2)sin(C/2)

In DeltaABC ,prove that: a) sin2A + sin2B-sin2C=4cosA cosB sinC

If A + B + C = 180^@ , then prove that sin 2 A+ sin 2B + sin 2C = 4 sin A sin B sin C

If A+B+C=pi , prove that : cosA sinB sinC +cosB sinC sinA+cosC sinA sinB=1+cosA cosB cosC .

If A+B+C= pi/2 , show that : sin^2 A + sin^2 B + sin^2 C=1-2 sinA sinB sinC