Home
Class 12
MATHS
If A + B + C = pi then prove that cos A ...

If `A + B + C = pi` then prove that `cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

If A + B + C = 180^@ , then prove that sin 2 A+ sin 2B + sin 2C = 4 sin A sin B sin C

If A+B+C=180^0 , prove that : cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)

In any DeltaABC , prove that : a cos A + b cos B + c cos C = 2a sin B sin C

If A+B+C = pi , prove that : cos2A-cos2B -cos2C = -1+4cosAsinBsinC

If A+B+C = pi , prove that : cos2A +cos2B +cos2C =-1-4cosAcosBcosC .

Prove that (cos A - cos B) ^(2) + (sin A - sin B ) ^(2) = 4 sin ^(2) ((A -B)/( 2 )).

If A+B+C=(3pi)/(2) , then show that cos 2A+cos 2B+cos 2C=1-4 sin A sin B sin C .

Prove that (cos A + cos B ) ^(2) +(sin A + sin B) ^(2) = 4 cos ^(2) ((A -B)/(2)).