Home
Class 12
MATHS
Prove that : (sin 2A+sin 2B + sin 2C)/(c...

Prove that : `(sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (sin A - sin B)/ (cos A + cos B) + (cos A - cos B)/ (sin A + sin B) = 0

Prove that: (sin A+sin B)/(cos A+cos B)=tan((A+B)/2)

Prove that: (sin A-sin B)/(cos A+cos B)=tan((A-B)/2)

If A and B are complementary angles, prove that : (sin A + sin B)/ (sin A - sin B) + (cos B - cos A)/ (cos B + cos A) = (2)/(2 sin^(2) A - 1)

If A+B+C=180^0 , prove that : cos^2 (A/2) + cos^2 (B/2) - cos^2 (C/2) = 2cos (A/2) cos (B/2) sin (C/2)

If A+B+C=180^0 , prove that : cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)

In any DeltaABC , prove that : (cos A)/(b cos C + c cos B) + (cos B)/(c cos A + a cos C) + (cos C)/(a cos B + b cos A) = (a^2 + b^2 + c^2)/(2abc)

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

Prove that: sin^2B=sin^2A+sin^2(A-B)-2sin A cos B sin(A-B)

Prove that : (1)/ (sin A - cos A) - (1)/ (sin A + cos A) = (2 cos A)/(2 sin^(2) A - 1)