Home
Class 12
MATHS
In triangle ABC, prove that cos(A/2)+cos...

In triangle ABC, prove that `cos(A/2)+cos(B/2)+cos(C/2)=4cos(pi-A)/4cos(pi-B)/4cos(pi-C)/4`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos(pi/7)cos(2pi/7)cos(4pi/7)=-1/8,

Prove that: cos(pi/7)cos((2pi)/7)cos((4pi)/7)=-1/8

Prove that 4cos((2pi)/7).cos(pi/7)-1=2cos((2pi)/7) .

If A+B+C=180 , prove that: sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

Prove that: cos(pi/5)cos((2pi)/5)cos((4pi)/5)cos((8pi)/5)=(-1)/16

Prove that: cos(pi/4+A)+cos(pi/4-A)=sqrt(2)cosA

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

Prove that cos(2pi)/(15)cos(4pi)/(15)cos(8pi)/(15)cos(14pi)/(15)=1/(16)

In a triangle ABC, prove that (a) cos(A + B) + cos C = 0 (b) tan( (A+B)/2)= cot(C/ 2)

If A+B+C = pi , prove that : cos2A +cos2B +cos2C =-1-4cosAcosBcosC .