Home
Class 12
MATHS
If A+B+C=pi, Prove that : sin( A/2) + si...

If `A+B+C=pi`, Prove that : `sin( A/2) + sin( B/2) + sin(C/2) =1 + 4 sin( (B+C)/(4)) sin( (C+A)/(4)) sin( (A+B)/(4))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

In DeltaABC, prove that: a) sin(A/2)+sin(B/2) +sin(C/2)= 1+4sin((pi-A)/4)sin((pi-B)/4).sin((pi-C)/4)

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

If A+B+C=pi , prove that : (sin ((B+C)/(2)) + sin ((C+A)/(2)) + sin( (A+B)/(2) )) equals (4cos ((pi-A)/(4)) cos( (pi-B)/(4)) cos((pi-C)/(4))) .

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C= pi/2 , show that : sin^2 A + sin^2 B + sin^2 C=1-2 sinA sinB sinC

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

If A+B+C = pi , prove that : sin^(2)A +sin^(2)B +sin^(2)C = 2(1+cosAcosBcosC)

Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.

In any triangle A B C , prove that following: \ \ asin(A/2)sin((B-C)/2)+bsin(B/2)sin((C-A)/2)+c sin(C/2)sin((A-B)/2)=0.