Home
Class 12
MATHS
If A +B+C=pi, prove that tan^(2)""(A)/(2...

If A +B+C=`pi`, prove that `tan^(2)""(A)/(2)+tan^(2)""(B)/(2)+tan^(2)""(C)/(2)ge1`

Promotional Banner

Similar Questions

Explore conceptually related problems

In an actue-angled triangle ABC Statement-1: tan^(2)""(A)/(2)+tan^(2)""(B)/(2)+tan^(2)""(C)/(2)ge1 Statement-2: tanAtanB tanCge3sqrt3

If A+B+C=pi , prove that : tan( A/2) tan (B/2) + tan (B/2 )tan (C/2)+ tan( C/2) tan (A/2) =1

If A+B+C=pi, prove that tan^2A/2+tan^2B/2+tan^2C/2geq1.

If A+B+C=pi, prove that tan^2A/2+tan^2B/2+tan^2C/2geq1.

In DeltaABC , prove that: s^(2).tan(A/2)tan(B/2)tan(C/2)=Delta

In a "DeltaA B C prove that tan(("A"+"B")/2)=cot("C"/2)

If A,B,C are angles of a triangle ,then the minimum value of tan^(2)(A/2)+tan^(2)(B/2)+tan^(2)(C/2) , is

If A+B+C=180^@, then prove that tan^2 (theta/2)=tan(B/2) tan(C/2). when cos theta(sin B+sin C)=sin A.

In any triangle A B C , prove that following : c/(a-b)=(tan(A/2)+tan(B/2))/(tan(A/2)-tan(B/2))

Prove the questions : 1-tan.(A)/(2)tan.(B)/(2) = (2c)/((a+b+c))