Home
Class 12
MATHS
If A+B+C=pi, prove that : (cotB+cotC) (c...

If `A+B+C=pi`, prove that : `(cotB+cotC) (cotC+cotA) (cotA+cotB)=cosecA cosecB cosecC`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that: cotB cotC + cotC cotA + cotA cotB=1 .

In DeltaABC , prove that: cotA+cotB+cotC = cotAcotBcotC+"cosec"A"cosec"B"cosec"C

If A+B+C=pi/2 , show that : cotA+cotB+cotC=cotA cotB cotC

If A+B+C=pi , prove that : (tanA+tanB+tanC) (cotA+cotB+cotC)=1+secA secB secC .

i) If A+B=pi/4 prove that: (cotA-1)(cotB-1)=2

Prove that (cotA- cosA)/(cotA+ cosA) = (cosecA -1)/(cosecA+1)

Prove that (cotA-cosA)/(cotA+cosA)=(cosecA-1)/(cosecA+1)

Prove that (cotA+tanB)/(cotB+tanA)=cotAtanB

Prove that : (tanA)/(1-cotA)+(cotA)/(1-tanA)=1+secA" cosec"A

If A+B+C=pi , prove that cotA+cotB+cotC-cos e cAdotcos e cBdotcos e cC=cotAdotcotBdotcotCdot