Home
Class 12
MATHS
If A+B+C=180^0, prove that : sin^2 A + s...

If `A+B+C=180^0`, prove that : `sin^2 A + sin^2 B + sin^2 C =2 (1+cosA cosB cosC)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC

If A+B+C = pi , prove that : sin^(2)A +sin^(2)B +sin^(2)C = 2(1+cosAcosBcosC)

If A+B+C=180^@ , then prove that cos^2 A + cos^2 B +cos^2 C=1-2cosA cosB cosC .

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

In DeltaABC ,prove that: a) sin2A + sin2B-sin2C=4cosA cosB sinC

In DeltaABC ,prove that: sin2A + sin2B-sin2C=4cosA cosB sinC

If A + B + C = 180^@ , then prove that sin 2 A+ sin 2B + sin 2C = 4 sin A sin B sin C

If A+B+C=0 , Prove : cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB cosC .

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .