Home
Class 12
MATHS
If A+B+C=180^0, prove that : cos^2( A/2)...

If `A+B+C=180^0`, prove that : `cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If A+B+C=180^0 , prove that : cos^2 (A/2) + cos^2 (B/2) - cos^2 (C/2) = 2cos (A/2) cos (B/2) sin (C/2)

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

If A+B+C=180 , prove that: sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

If A + B + C = pi then prove that cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)

If A+B+C=180^@ , then prove that cos^2 A + cos^2 B +cos^2 C=1-2cosA cosB cosC .

If A+B+C=180^0 , prove that : sin^2 A + sin^2 B + sin^2 C =2 (1+cosA cosB cosC)

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

sin^2(A/2)+sin^2(B/2)-sin^2(C/2)=1-2cos(A/2)cos(B/2)sin(C/2)

Prove that (cos^(2)A-sin^(2)B)+1-cos^(2)C

In any DeltaABC , prove that : a cos A + b cos B + c cos C = 2a sin B sin C