Home
Class 12
MATHS
If A+B+C=pi//2, show that (a) sin^(2)A...

If `A+B+C=pi//2`, show that
(a) `sin^(2)A+sin^(2)B+sin^(2)C=1-2 sin A sin B sin C`
(b) `cos^(2)A+cos^(2)B+cos^(2)C=2+2sinA sin B sinC`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C= pi/2 , show that : sin^2 A + sin^2 B + sin^2 C=1-2 sinA sinB sinC

If A+B+C=pi , show that : 1/2 sum sin^2 A (sin 2B+sin 2C) = 3 sin A sin B sin C .

If DeltaABC , prove that: a) sin^(2)A+sin^(2)B-sin^(2)C=2sinAsinBcosC b) cos^(2)A+cos^(2)B-cos^(2)C=1-2sinAcosBsinC c) cos^(2)A+cos^(2)B+cos^(2)C=1-2cosAcosBcosC

Prove that (cos^(2)A-sin^(2)B)+1-cos^(2)C

If A+B+C = pi , prove that : sin^(2)A +sin^(2)B +sin^(2)C = 2(1+cosAcosBcosC)

If A + B + C = 180^@ , then prove that sin 2 A+ sin 2B + sin 2C = 4 sin A sin B sin C

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

If A+B+C=(3pi)/(2) , then show that cos 2A+cos 2B+cos 2C=1-4 sin A sin B sin C .

Prove that: sin^2B=sin^2A+sin^2(A-B)-2sin A cos B sin(A-B)

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC