Home
Class 12
MATHS
If A+B+C= pi/2, show that : cos^2 A + co...

If `A+B+C= pi/2`, show that : `cos^2 A + cos^2 B + cos^2 C = 2 + 2 sinA sinB sinC`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C= pi/2 , show that : sin^2 A + sin^2 B + sin^2 C=1-2 sinA sinB sinC

If A + B + C = pi then prove that cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)

If A+B+C=(3pi)/(2) , then show that cos 2A+cos 2B+cos 2C=1-4 sin A sin B sin C .

If A+B+C=180^0 , prove that : cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)

If A+B+C = pi , prove that : cosA+cosB + cosC = 1+4sinA/2sinB/2sinC/2 .

If A+B+C = pi , prove that : cos2A-cos2B -cos2C = -1+4cosAsinBsinC

If A+B+C=180^0 , prove that : cos^2 (A/2) + cos^2 (B/2) - cos^2 (C/2) = 2cos (A/2) cos (B/2) sin (C/2)

If A+B+C = pi , prove that : cos2A +cos2B +cos2C =-1-4cosAcosBcosC .

If A+B+C=pi , prove that : cos2A+cos2B+cos2C=-1-4cosA cosB cosC

if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.