Home
Class 12
MATHS
If A+B+C=pi and A+B=2C, prove that : 4 (...

If `A+B+C=pi and A+B=2C`, prove that : `4 (sin^2 A + sin^2 B - sinA sinB)=3`.

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If A+B+C= pi/2 , show that : sin^2 A + sin^2 B + sin^2 C=1-2 sinA sinB sinC

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

If A + B + C = 180^@ , then prove that sin 2 A+ sin 2B + sin 2C = 4 sin A sin B sin C

If A+B+C=pi , Prove that : sin( A/2) + sin( B/2) + sin(C/2) =1 + 4 sin( (B+C)/(4)) sin( (C+A)/(4)) sin( (A+B)/(4))

If A+B+C=pi , show that : 1/2 sum sin^2 A (sin 2B+sin 2C) = 3 sin A sin B sin C .

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

If A+B+C=pi , prove that : cosA sinB sinC +cosB sinC sinA+cosC sinA sinB=1+cosA cosB cosC .

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sin(A/2) sin(B/2)sin(C/2)

If A+B+C = pi , prove that : sin^(2)A +sin^(2)B +sin^(2)C = 2(1+cosAcosBcosC)