Home
Class 12
MATHS
If A+B+C=2pi, prove that : cos^2B+cos^2C...

If `A+B+C=2pi`, prove that : `cos^2B+cos^2C-sin^2A-2cosA cosB cosC=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : cos2A+cos2B+cos2C=-1-4cosA cosB cosC

If A+B+C = pi , prove that : cos2A +cos2B +cos2C =-1-4cosAcosBcosC .

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC

If A+B+C=0 , Prove : cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB cosC .

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

If A+B+C = pi , prove that : cos2A-cos2B -cos2C = -1+4cosAsinBsinC

If A+B+C=180^@ , then prove that cos^2 A + cos^2 B +cos^2 C=1-2cosA cosB cosC .

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1