Home
Class 12
MATHS
If A+B+C=pi//2, show that (a) cotA+cot...

If `A+B+C=pi//2`, show that
(a) `cotA+cotB+cotC=cotAcotB cotC`
(b) `tan A tan B+tan B tan C+tan C tan A=1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi/2 , show that : cotA+cotB+cotC=cotA cotB cotC

If A+B+C=pi , prove that: cotB cotC + cotC cotA + cotA cotB=1 .

Given that A = B +C. prove that tan A - tan B - tan C = tan A tan B tan C.

If A+B+C=pi , prove that : (cotB+cotC) (cotC+cotA) (cotA+cotB)=cosecA cosecB cosecC

If A+B+C=pi , prove that : (cotA+cotB)/(tanA+tanB) + (cotB+cotC)/(tanB+tanC) + (cotC+cotA)/(tanC+tanA) =1

If A, B, C, D be the angles of a quadrilateral, prove that : (tanA+tanB+tanC+tanD)/(cotA+cotB+cotC+cotD) = tan A tan B tan C tan D

If A, B, C, D be the angles of a quadrilateral, prove that : (tanA+tanB+tanC+tanD)/(cotA+cotB+cotC+cotD) = tan A tan B tan C tan D

(cos(A-B))/(cos(A+B))+cos(C+D)/(cos(C-D))=0 => tan A tan B tan C tan D =

If A +B = 225 ^(@), prove that tan A + tan B =1- tan A tan B

If A+ B+ C= pi , n in Z,then tan nA+ tan +nB +tan nC is equal to