Home
Class 12
MATHS
If A+B+C= pi/2, show that : tanA tanB + ...

If `A+B+C= pi/2`, show that : `tanA tanB + tanB tanC + tanC tanA=1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

tanA +tanB + tanC = tanA tanB tanC if

In a DeltaABC , prove that : tanA+tanB+tanC= tanA tanB tanC

In a DeltaABC , prove that : tanA+tanB+tanC= tanA tanB tanC

In DeltaABC , prove that: tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1

If tanA+tanB+tanC=tanAtanBtanC then

If ABC D is a cyclic quadrilateral, then find the value of sinA+sinB-sinC-sinD If A+B+C=(pi)/(2) , then find the value of tanA tanB+tanBtanC+tanC tanA

In DeltaABC , tanA+tanB+tanC=tanAtanBtanC

If A+B+C=pi, prove that (tanA)/(tanBdottanC)+(tanB)/(tanAdott a n C)+(tanC)/(tanAdottanB)=tanA+tanB+tanC-2cot A-2cot B-2cot C

If A-B=pi/4 , then prove that: (1+tanA)(1-tanB)=2

Statement I The triangle so obtained is an equilateral triangle. Statement II If roots of the equations be tan A, tan B and tanC then tan A + tanB+tanC=3sqrt (3)