Home
Class 12
MATHS
If A+B+C=pi, prove that : cosA + cosB-co...

If `A+B+C=pi`, prove that : `cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : cos2A+cos2B+cos2C=-1-4cosA cosB cosC

If A+B+C = pi , prove that : cosA+cosB + cosC = 1+4sinA/2sinB/2sinC/2 .

If A+B+C = pi , prove that : cos2A +cos2B +cos2C =-1-4cosAcosBcosC .

In A B C , prove that cosA+cosB+cosClt=3/2dot

If A+B+C = pi , prove that : cos2A-cos2B -cos2C = -1+4cosAsinBsinC

If A+B+C+D = 2pi , prove that : cosA +cosB+cosC+cosD=4 cos, (A+B)/2 cos, (B+C)/(2) cos, (C+A)/2

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos, A/2 cos, B/2 cos, C/2

If A + B + C = pi then prove that cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC

In DeltaABC , prove that: a(cosC-cosB)=2(b-c)cos^(2)A/2