Home
Class 12
MATHS
In triangle ABC, prove that sin(B+C-A)si...

In triangle ABC, prove that `sin(B+C-A)sin(C+A-B)+sin(A+B-C)=4s in As in Bs in Cdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin Asin Bsin Cdot

In any triangle A B C , prove that: \ asin(B-C)+b sin(C-A)+csin(A-B)=0

In any triangle ABC, prove that sin^3Acos(B-C)+sin^3Bcos(C-A)+sin^3Ccos(A-B) = 3sinAsinBsinC

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+ sin C)+(b^2sin(C-A))/(sinC+ sin A)+(c^2sin(A-B))/(sinA+ sin B)=0

In any triangle A B C , prove that: \ a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B)=0

For any triangle ABC, prove that sin(B-C)/2=(b-c) /a ( cosA/2)

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

If A,B,C be the angles of a triangle, prove that (sin(B+C)+sin(C+A)+sin(A+B))/(sin(pi+A)+sin(3pi+B)+sin(5pi+C))=-1

In any triangle A B C , prove that: acos((B-C)/2)=(b+c)sin(A/2)

In any triangle ABC ,prove that (a-b cos C)/( c-b cos A ) = (sin C ) /( sin A)