Home
Class 12
MATHS
Show that sin (x-y) + sin (y-z) + sin (z...

Show that `sin (x-y) + sin (y-z) + sin (z-x) + 4sin((x-y)/(2)) sin( (y-z)/(2)) sin((z-x)/(2)) =0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin (x + y ) sin (x -y) + sin ( y+ z) sin (y - z) + sin (z+x) sin (z-x) = 0.

Prove that, sinx.siny.sin(x-y) + siny.sinz.sin(y-z) + sinz.sinx.sin(z-x) + sin(x-y).sin(y-z).sin(z-x)=0

The value of sinx siny sin(x-y)+sinysinz sin(y-z) +sinz sinx sin(z-x)+sin(x-y)sin(y-z)sin(z-x), is

Prove that : (sin x + sin y)/(sin x - sin y) = tan ((x+y)/2).cot ((x-y)/2)

Prove that : (cos x - cos y)^(2) + (sin x - sin y)^(2) = 4 sin^(2) ((x - y)/(2))

Prove that : (sin (x+y))/(sin (x-y) )= (sin x. cos y + cos x . Sin y)/(sin x. cos y-cos x. sin y)

lf cos x + cosy-cos z = 0 = sin x + sin y + sin z then cos((x-y)/2)=

Draw the graph of y=sin x and y=sin . (x)/(2) .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that x^(2)-y^(2)+z^(2)-2xz sqrt(1-y^(2))=0

If x = a sec A cos B, y = b sec A sin B and z = c tan A, show that : (x^(2))/ (a^(2)) + (y^(2))/ (b^(2)) - (z^(2))/(c^(2)) = 1