Home
Class 12
MATHS
In a triangle ABCsin(B+2C)+sin(C+2A)+sin...

In a triangle ABC`sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC b^(2)sin2C+c^(2)sin2B=

In any triangle A B C , prove that following: \ \ asin(A/2)sin((B-C)/2)+bsin(B/2)sin((C-A)/2)+c sin(C/2)sin((A-B)/2)=0.

If A+B+C=pi , Prove that : sin( A/2) + sin( B/2) + sin(C/2) =1 + 4 sin( (B+C)/(4)) sin( (C+A)/(4)) sin( (A+B)/(4))

In a triangle ABC, 2 ac sin (1/2(A-B + C)) =

In any triangle ABC, show that : 2a sin (B/2) sin (C/2)=(b+c-a) sin (A/2)

In a triangle sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , then its angle A is equal to-

In a right angled triangle ABC sin^(2)A+sin^(2)B+sin^(2)C=

In DeltaABC, prove that: a) sin(A/2)+sin(B/2) +sin(C/2)= 1+4sin((pi-A)/4)sin((pi-B)/4).sin((pi-C)/4)

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin Asin Bsin Cdot

If A+B-C=3pi,\ t h e n\ sin A+ sin B-sin C is equal to- a. 4sin(A/2)sin(B/2)cos(C/2) b. -4sin(A/2)sin(B/2)cos(C/2) c. \ 4cos(A/2)cos(B/2)cos(C/2) d. -4cos(A/2)cos(B/2)cos(C/2)