Home
Class 12
MATHS
If A+B+C=pi, prove that : (sin ((B+C)/(2...

If `A+B+C=pi`, prove that : `(sin ((B+C)/(2)) + sin ((C+A)/(2)) + sin( (A+B)/(2) ))` equals `(4cos ((pi-A)/(4)) cos( (pi-B)/(4)) cos((pi-C)/(4)))`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , Prove that : sin( A/2) + sin( B/2) + sin(C/2) =1 + 4 sin( (B+C)/(4)) sin( (C+A)/(4)) sin( (A+B)/(4))

If A+B+C = pi , prove that : sin^(2)A +sin^(2)B +sin^(2)C = 2(1+cosAcosBcosC)

If A+B+C=pi and A+B=2C , prove that : 4 (sin^2 A + sin^2 B - sinA sinB)=3 .

If A+B+C+D=2pi , show that : cosA-cosB+cosC-cosD=4sin( (A+B)/(2)) sin( (A+D)/(2)) cos( (A+C)/(2)) .

cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

Prove that : (1+sin 2A)/(cos 2A) = (cos A + sin A)/(cos A - sin A) = tan (pi/4 + A)

In triangle A B C , prove that sin(A/2)+sin(B/2)+sin(C/2)lt=3/2dot Hence, deduce that cos((pi+A)/4)cos((pi+B)/4)cos((pi+C)/4)lt=1/8

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos, A/2 cos, B/2 cos, C/2