Home
Class 12
MATHS
Let O be the centre of the regular hexag...

Let O be the centre of the regular hexagon ABCDEF then find `vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

In a regular hexagon ABCDEF, vec(AE)

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

Let O be the centre of a regular hexagon A B C D E F . Find the sum of the vectors vec O A , vec O B , vec O C , vec O D , vec O Ea n d vec O F .

If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + vec(FA)=

If O is the circumcentre and P the orthocentre of Delta ABC , prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP) .

Let vec(C )= vec(A)+vec(B) then