Home
Class 12
MATHS
For any two vectors veca and vecb prove ...

For any two vectors `veca and vecb` prove that `|veca-vec|ge|veca|-|vecb|`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors veca and vecb prove that |veca.vecb|<=|veca||vecb|

For any two vectors veca and vecb prove that |veca+vecb|lt+|veca|+|vecb|

For any two vectors vec a\ a n d\ vec b prove that | vec axx vec b|^2=| (veca. veca , veca. vecb),(vecb.veca ,vecb.vecb)|

If theta is the angle between any two vectors veca and vecb , then |veca.vecb|=|veca xx vecb| when theta is equal to

If veca and vecb are any two vectors , then prove that |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}| or |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2) (This is also known as Lagrange identily)

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

Find |veca-vecb| , if two vector veca and vecb are such that |veca|=4,|vecb|=5 and veca.vecb=3

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

Two vectors vecA and vecB are such that vecA+vecB=vecA-vecB . Then