Home
Class 12
MATHS
Show that the vectors veca-2vecb+3vecc,-...

Show that the vectors `veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc` are coplanar vector where `veca, vecb, vecc` are non coplanar vectors

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

Show that points with position vectors 2veca-2vecb+3vecc,-2veca+3vecb-vecc and 6veca-7vecb+7vecc are collinear. It is given that vectors veca,vecb and vecc and non-coplanar.

Examine whether the following vectors from a linearly dependent or independent set of vector: veca-3vecb+2vecc, veca-9vecb-vecc,3veca+2vecb-vecc where veca,vecb,vecc are non zero non coplanar vectors

The position vector of three points are 2veca-vecb+3vecc , veca-2vecb+lambdavecc and muveca-5vecb where veca,vecb,vecc are non coplanar vectors. The points are collinear when

Show that the points having position vectors (veca-2vecb+3vecc),(-2veca+3vecb+2vecc),(-8veca+13vecb) re collinear whatever veca,vecb,vecc may be

For any three vectors veca,vecb,vecc show that (veca-vecb),(vecb-vecc) (vecc-veca) are coplanar.

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(veccxxvecd)=1 and veca.vecc=1/2 then (A) veca,vecb,vecc are non coplanar (B) vecb,vecc, vecd are non coplanar (C) vecb, vecd are non paralel (D) veca, vecd are paralel and vecb, vecc are parallel

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If is given that vecx= (vecbxxvecc)/([veca,vecb,vecc]), vecy=(veccxxveca)/[(veca,vecb,vecc)], vecz=(vecaxxvecb)/[(veca,vecb,vecc)] where veca,vecb,vecc are non coplanar vectors. Find the value of vecx.(veca+vecb)+vecy.(vecc+vecb)+vecz(vecc+veca)