Home
Class 12
MATHS
The position vectors of two points A and...

The position vectors of two points A and B are `hati+hatj+hatk` and `5hati-3hatj+hatk`. Find a unit vector in direction of `vec(AB)`, and also find the direction cosines of `vec(AB)`. What angles does `vec(AB)` make with the three axes?

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The position vectors of A and B are 3hati - hatj +7hatk and 4hati-3hatj-hatk . Find the magnitude and direction cosines of vec(AB) .

If veca=hati+2hatj-hatk and vecb=3hati+hatj-hatk find a unit vector int direction of veca-vecb .

If the position vectors of A and B respectively hati+3hatj-7hatk and 5 hati-2hatj+4hatk , then find AB

If the position vectors of the points A and B are hati+3hatj-hatk and 3hati-hatj-3hatk , then what will be the position vector of the mid-point of AB

The position vectors of A and B are hati-hatj+2hatk and 3hati-hatj+3hatk . The position vector of the middle points of the line AB is

The position vectors of A and B are 2hati-9hatj-4hatk and 6hati-3hatj+8hatk respectively, then the magnitude of AB is

If the position vectors of A and B are hati+3hatj-7hatk and 5hati-2hatj+4hatk , then the direction cosine of AB along Y-axis is

Find the direction cosines of the vector 2hati+2hatj-hatk

Find the direction cosines of the vector hati+2hatj+3hatk .

If the position vectors of P and Q are hati+2hatj-7hatk and 5hati-3hatj+4hatk respectively, the cosine of the angle between vec(PQ) and z-axis is