Home
Class 12
MATHS
Examine whether the following vectors fr...

Examine whether the following vectors from a linearly dependent or independent set of vector: ` veca-3vecb+2vecc, veca-9vecb-vecc,3veca+2vecb-vecc where veca,vecb,vecc` are non zero non coplanar vectors

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

Let veca,vecb,vecc be three linearly independent vectors, then ([veca+2vecb-vecc 2veca+vecb+vecc4veca-vecb+5vecc])/([vecavecbvecc])

The position vector of three points are 2veca-vecb+3vecc , veca-2vecb+lambdavecc and muveca-5vecb where veca,vecb,vecc are non coplanar vectors. The points are collinear when

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 8vecb+6vecc, veca+vecb+vecc, 2veca-vecb+vecc, veca-vecb-vecc

If vecp=2veca-3vecb, vecq=veca-2b+vecc, vecr=-3veca+vecb+2vecc, veca,vecb,vecc being non-zero, non-coplanar vectors, then -2veca+vecb-vecc is equal to