Home
Class 12
MATHS
If veca,vecb,vecc are non coplanar non z...

If `veca,vecb,vecc` are non coplanar non zero vectors and `vecn.veca=vecn.vecb=vecn.vecc=0,` Show that `vecn` is a zero vector

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

if veca,vecb,vecc are non coplanar and non zero vectors such that vecbxxvecc=veca,vecaxxvecb=vecc and veccxxveca=vecb then 3. (a) |a|+|b|+|c| =0 (b) |a|+|b|+|c|=2 (c) |a|+|b|+|c| =3 (d) none of these

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

if veca,vecb,vecc are non coplanar and non zero vectors such that vecbxxvecc=veca,vecaxxvecb=vecc and veccxxveca=vecb then 1 (a) |a|=1 (b)|a|=2 (c) |a|=3 (d) |a|=4

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca,vecb and vecc are non coplnar and non zero vectors and vecr is any vector in space then [vecc vecr vecb]veca+[veca vecr vecc] vecb+[vecb vecr veca]c= (A) [veca vecb vecc] (B) [veca vecb vecc]vecr (C) vecr/([veca vecb vecc]) (D) vecr.(veca+vecb+vecc)

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

Let veca,vecb,vecc be three non-zero vectors such that [vecavecbvecc]=|veca||vecb||vecc| then

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc and veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these