Home
Class 12
MATHS
For any two vectors veca and vecb prove ...

For any two vectors `veca and vecb` prove that `|veca.vecb|<=|veca||vecb|`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors veca and vecb prove that |veca-vec|ge|veca|-|vecb|

For any two vectors vec a\ a n d\ vec b prove that | vec axx vec b|^2=| (veca. veca , veca. vecb),(vecb.veca ,vecb.vecb)|

If theta is the angle between any two vectors veca and vecb , then |veca.vecb|=|veca xx vecb| when theta is equal to

Find |veca-vecb| , if two vector veca and vecb are such that |veca|=4,|vecb|=5 and veca.vecb=3

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

If veca and vecb are any two vectors , then prove that |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}| or |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2) (This is also known as Lagrange identily)

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

For any three vectors veca,vecb,vecc show that (veca-vecb),(vecb-vecc) (vecc-veca) are coplanar.

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =