Home
Class 12
MATHS
In any Delta ABC, prove that cos C = (a^...

In any `Delta ABC`, prove that `cos C = (a^2+b^2-c^2)/(2ab)` with the help of vectors

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In any Delta A B C , prove that: a(b\ cos C-c cosB)=b^2-c^2

In any Delta ABC , prove that a(bcosC-c""cosB)=b^(2)-c^(2) .

For any triangle ABC, prove that a(bcosC-c cosB)=b^2-c^2

For any triangle ABC, prove that a(bcosC-c cosB)=b^2-c^2

For any triangle ABC, prove that a(bcosC-ccosB)=b^2-c^2

In any Delta A B C , prove that: 2(bc cosA+cacosB+a bcosC)=a^2+b^2+c^2

In any Delta A B C , prove that: (cos A)/a+(cos B)/b+(cos C)/c=(a^2+b^2+c^2)/(2a b c)

In any triangle A B C , prove that: Delta=(b^2+c^2-a^2)/(4cotA) .

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In any Delta ABC, prove the following : r_1=rcot(B/2)cot(C/2)