Home
Class 12
MATHS
If |veca|=2,|vecb|=7 and (vecaxxvecb)=3h...

If `|veca|=2,|vecb|=7 and (vecaxxvecb)=3hati+2hatj+6hatk` find the angle between `veca and vecb`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb asre two vectors such that |veca|=2, |vecb| = 7 and vecaxxvecb=3hati+6hatk find the angle between veca and vecb

If a=4hati+2hatj-hatk and vecb=5hati+2hatj-3hatk find the angle between the vectors veca+vecb and veca-vecb

A unit vector veca in the plane of vecb=2hati+hatj and vecc=hati-hatj+hatk is such that angle between veca and vecd is same as angle between veca and vecb where vecd=vecj+2veck . Then veca is

If vecA= 2hati-2hatj-hatk and vecB= hati+hatj , then : (a) Find angle between vecA and vecB . (b) Find the projection of resultant vector of vecA and vecB on x-axis.

Let veca=2hati+hatj-2hatk and vecb=hati+hatj . Let vecc be a vector such that |vecc-veca|=3,|(vecaxxvecb)xxvecc| = 3 and the angle between vecc and veca xx vecb is 30^@ Find veca.vecc

If vecA=2hati-2hatj-hatk and vecB=hati+hatj , then : (a) Find angle between vecA and vecB .

If veca=2hati+3hatj+4hatk,veca.vecb=2 and vecaxxvecb=2hati-hatk , then vecb is

IF vecA = (2 hati + hatj) and vecB = hati - hatj + 5 hatk find (i) vecA xx vecB (ii ) angle between vecA and vecB (iii ) unit vector perpendicular to vecA and vecB .

If veca=2hati-3hatj+4hatk, veca.vecb=2 and veca xx vecb=hati+2hatj+hatk , then vecb is equal to

If veca=4hati+6hatj and vecb=3hati+4hatk find the vector component of veca alond vecb .