Home
Class 12
MATHS
For three vectors veca+vecb+vecc=0, che...

For three vectors `veca+vecb+vecc=0`, check if `(vecaxxvecb)=(vecbxxvecc)=(veccxxveca)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any three vectors veca, vecb, vecc the value of vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb) , is

If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then [vecaxxvecb vecbxxvecc veccxxveca] is equal to

If veca+2vecb+3vecc=0 , then vecaxxvecb+vecbxxvecc+veccxxveca=

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb\')+(veccxxvecc\') is (A) veca+vecb+vecc (B) veca\'+vecb\'+vecc\' (C) 0 (D) none of these

Let veca, vecb, vecc be three vectors such that [(veca, vecb, vecc)]=2 . If vecr=l(vecbxxvecc)+m(veccxxveca)+n(vecaxxvecb) be perpendicular to veca+vecb+vecc , then the value of l+m+n is

If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxveca)] is equal to

If veca, vecb, vecc are non coplanar non null vectors such that [(veca, vecb, vecc)]=2 then {[(vecaxxvecb, vecbxxvecc, veccxxveca)]}^(2)=

For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca equals

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=

Three vectors veca,vecb,vecc are such that vecaxxvecb= 3(vecaxxvecc) Also |veca|=|vecb|=1, |vecc|=1/3 If the angle between vecb and vecc is 60^@ then