Home
Class 12
MATHS
Evaluate the expression (veca-vecb)xx(ve...

Evaluate the expression `(veca-vecb)xx(veca+vecb)=`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

Given that veca and vecb are two non zero vectors, then the value of (veca + vecb) xx (veca-vecb) is,

Prove that: (2veca-vecb)xx (veca+2vecb)=5vecaxxvecb .

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is

Prove that: |(veca+vecb)xx(veca-vecb)|=2ab if veca_|_vecb

If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ (vecb + veca) xx (2 veca + vecb)] = veca+vecb then angle theta " between " veca and vecb is

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

Find |veca| and |vecb| if (veca+vecb).(veca-vecb)=8 and |veca|=8|vecb|.