Home
Class 12
MATHS
Prove by vector methods that sin(alpha+b...

Prove by vector methods that `sin(alpha+beta)=sin alphacos beta+cos alphasin beta`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Show by vector method that sin(alpha-beta)=sinalphacosbeta-cosalpha sinbeta.

By geometrical interpretation, prove that (i) sin(alpha+beta)=sin alpha cos beta+sinbeta cosalpha (ii) cos(alpha+beta)=cosalpha cosbeta -sin alpha sinbeta

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

Prove that: tan(alpha+beta)tan(alpha-beta)=(sin^2 alpha-sin^2 beta)/(cos^2 alpha-sin^2 beta)

Prove that : cos^2alpha+cos^2(alpha+beta)-2cosalphacosbetacos(alpha+beta)=sin^2beta

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

Under rotation of axes through theta , x cosalpha + ysinalpha=P changes to Xcos beta + Y sin beta=P then . (a) cos beta = cos (alpha - theta) (b) cos alpha= cos( beta - theta) (c) sin beta = sin (alpha - theta) (d) sin alpha = sin ( beta - theta)