Home
Class 12
MATHS
Prove that (veca+3vecb)xx(veca+vecb)+(3v...

Prove that `(veca+3vecb)xx(veca+vecb)+(3veca-5vecb)xx(veca-vecb)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (2veca-vecb)xx (veca+2vecb)=5vecaxxvecb .

Prove that: |(veca+vecb)xx(veca-vecb)|=2ab if veca_|_vecb

Prove that (vecaxxvecb)^(2)= |(veca.veca" "veca.vecb),(veca.vecb" "vecb.vecb)|

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

Prove that : veca*(vecb+vec c)xx(veca+2vecb+3vec c)=[veca vecb vec c]

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ (vecb + veca) xx (2 veca + vecb)] = veca+vecb then angle theta " between " veca and vecb is

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|