Home
Class 12
MATHS
Prove that [veca+vecb vecb+vecc vecc+vec...

Prove that `[veca+vecb vecb+vecc vecc+veca]=2[vecavecbvecc]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

Prove that [veca+vecb,vecb+vecc,vecc+veca]=2[veca vecb vecc]

Prove that [ veca+ vecb , vecb+ vecc , vecc+ veca]=2[ veca , vecb , vecc] .

Prove that: [veca+vecb " "vecb+vecc " "vecc+veca]=2[veca" " vecb" " vecc]

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

If veca,vecb,vecc are unity vectors such that vecd=lamdaveca+muvecb+gammavecc then lambda is equal to (A) ([veca vecb vecc])/([vecb veca vecc]) (B) ([vecb vecc vecd])/([vecb vecc veca]) (C) ([vecb vecd vecc])/([veca vecb vecc]) (D) ([vecc vecb vecd])/([veca vecb vecc])