Home
Class 12
MATHS
If vecaxxvecb=vecc and vecbxxvecc=veca, ...

If `vecaxxvecb=vecc` and `vecbxxvecc=veca`, show that `veca,vecb,vecc` are orthogonal in pairs. Also show that `|vecc|=|veca| and |vecb|=1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

If veca,vecb,vecc are three such that vecaxxvecb=vecc, vecbxxvecc=veca and veccxxveca=vecb , show that veca,vecb,vecc foem an orthogonal righat handed triad of unit vectors.

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If |veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0 the show that veca.vecb+vecb.vecc+vecc.veca=- 7

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If veca+2vecb+3vecc=0 , then vecaxxvecb+vecbxxvecc+veccxxveca=

If veca,vecb,vecc are coplanar then show that vecaxxvecb, vecbxxvecc and veccxxveca are also coplanar.

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc and any three vectors such that veca.vecb=0,vecb.vecc=0, then veca and vecc are

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is