Home
Class 12
MATHS
If vecX.vecA=0, vecX.vecB = 0 and vecX.v...

If `vecX.vecA=0, vecX.vecB = 0 and vecX.vecC =0` for some non-zero vector `vecx1 , then `[vecA vecB vecC] =0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecX.vecA=0, vecX.vecB=0,vecX.vecC=0 for some non-zero vector, vecX , then [vecAvecBvecC]=0

If vecx.veca=0vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

If vecx.veca=0vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

If vecr.veca=0,vecr.vecb=0andvecr.vecc=0 for some non-zero vector vecr , then the value of veca.(vecbxxvecc) is…… .

If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr , then the value of [(veca, vecb, vecc)] is

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and veca,vecb,vecc are non coplanar, then the area of the triangle whose vertices are A(veca),B(vecb) and C(vecc) is

If veca, vecb, vecc non-zero vectors such that veca is perpendicular to vecb and vecc and |veca|=1, |vecb|=2, |vecc|=1, vecb.vecc=1 . There is a non-zero vector coplanar with veca+vecb and 2vecb-vecc and vecd.veca=1 , then the minimum value of |vecd| is

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .