Home
Class 12
MATHS
Prove that the formula for the volume V ...

Prove that the formula for the volume V of a tetrahedron, in terms of the lengths of three coterminous edges and their mutul inclinations is `V^2=(a^2b^2c^2)/36 |(1,cosphi,cospsi),(cosphi,1,costheta),(cospsi, costheta, 1)|`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

(sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2cosectheta

Prove: (1+costheta-sin^2theta)/(sintheta(1+costheta))= cottheta

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

Prove that : (1-costheta)/(1+costheta)=(cottheta-cosectheta)^(2)

Prove that sqrt(1-sin^(2)theta)=costheta .

Prove that the product of the lengths of the perpendiculars drawn from the points (sqrt(a^2-b^2),0) and (-sqrt(a^2-b^2),0) to the line x/a costheta + y/b sintheta=1 is b^2 .

Prove that the product of the lengths of the perpendiculars drawn from the points (sqrt(a^2-b^2),0) and (-sqrt(a^2-b^2),0) to the line x/a costheta + y/b sintheta=1 is b^2 .

Prove that (1-sintheta+costheta)^2=2(1+costheta)(1-sintheta)

Prove that : (1-costheta)(1+costheta)(1+cot^(2)theta)=1

If a sintheta + bcos theta = C, then prove that a costheta -b sintheta = sqrt(a^2+b^2-c^2)