Home
Class 12
MATHS
show that (vecaxxvecb)xxvecc=vecaxx(vecb...

show that `(vecaxxvecb)xxvecc=vecaxx(vecbxxvecc)` if and only if `veca and vecc` are collinear or `(vecaxxvecc)xxvecb=vec0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc and any three vectors such that veca.vecb=0,vecb.vecc=0, then veca and vecc are

Prove that: vecaxx[vecbxx(veccxxveca)]=(veca.vecb)(vecaxxvecc)

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

If veca=3hati-hatj+2hatk, vecb=2hati+hatj-hatk, vecc=hati-2hatj+2hatk , find (vecaxxvecb)xxvecc and vecaxx(vecbxxvecc) and hence show that (vecaxxvecb)xxvecc!=veca(vecbxxvecc)

If vecaxx(vecbxxvecc)=vecbxx(veccxxveca) and [(vec, vecb, vecc)]!=0 then vecaxx(vecbxxvecc) is equal to

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), where veca,vecb,vecc are any three vectors such that veca.vecb!=0,vecb.vecc!=0 , then veca and vecc are (A) inclined at an angle pi/3 to each other (B) inclined at an angle of pi/6 to each other (C) perpendicular (D) parallel

Show that: (veca+vecb).{(vecb+vecc)xx(vecc+veca)|=2{veca.(vecbxxvecc)}

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vecd) is parallel to (vecb-vecc) .

If (vecaxxvecb)xxvecc=vecax(vecbxxvecc) then (A) (veccxxveca)xxvecb=0 (B) vecbxx(veccxxveca)=0 (C) veccxx(vecaxxvecb)=0 (D) none of these