Home
Class 12
MATHS
Show that the vectors vecaxx (bvecxxvecc...

Show that the vectors `vecaxx (bvecxxvecc),vecb(veccxxveca) and veccxx(vecaxxvecb)` are coplanar.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca, vecb, vecc be any three vectors.Then vectors vecu=vecaxx(vecbxxvecc), vecv=vecbxx(veccxxveca) and vecw=veccxx(vecaxxvecb) are such that they are

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

Prove that vecaxx(vecb+vecc)+vecbxx(vecc+veca)+veccxx(veca+vecb)=0

For any three vectors veca, vecb, vecc the value of vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb) , is

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

For any three vectors veca,vecb,vecc show that (veca-vecb),(vecb-vecc) (vecc-veca) are coplanar.

Prove that: vecaxx[vecbxx(veccxxveca)]=(veca.vecb)(vecaxxvecc)

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

vecaxx(vecaxx(vecaxxvecb)) equals