Home
Class 12
MATHS
Vectors vecA and vecB satisfying the ve...

Vectors `vecA and vecB` satisfying the vector equation `vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1`. where veca and `vecb` are given vectosrs, are

Promotional Banner

Similar Questions

Explore conceptually related problems

Three vectors vecA, vecB and vecC satisfy the relation vecA. vecB=0 and vecA. vecC=0. The vector vecA is parallel to

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

vecA and vecB are two vectors. (vecA + vecB) xx (vecA - vecB) can be expressed as :