Home
Class 12
MATHS
The equation vecr^2-2vecr.vecc+h=0, |vec...

The equation `vecr^2-2vecr.vecc+h=0, |vecc|gtsqrt(h)` represents
(A) circle
(B) ellipse
(C) cone
(D) sphere

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are three non coplanar vectors then the vector equation vecr=(1-p-q)veca+pvecb+qvecc are represents a: (A) straighat line (B) plane (C) plane passing through the origin (D) sphere

The equation x^(2) - 2xy +y^(2) +3x +2 = 0 represents (a) a parabola (b) an ellipse (c) a hyperbola (d) a circle

The equation vecr=lamda hati+muhatj represents the plane (A) x=0 (B) z=0 (C) y=0 (D) none of these

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to (a) |veca|^(2)(vecb.vecc) (b) |vecb|^(2)(veca .vecc) (c) |vecc|^(2)(veca.vecb) (d) none of these

If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2 does not exceed (A) 4 (B) 9 (C) 8 (D) 6

Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are vectors defined by the relations vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxveca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr . is equal to (A) 0 (B) 1 (C) 2 (D) 3

If veca,vecb,vecc are unit vectors such that veca is perpendicular to vecb and vecc and |veca+vecb+vecc|=1 then the angle between vecb and vecc is (A) pi/2 (B) pi (C) 0 (D) (2pi)/3

If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2+|vecc^2-veca^2|^2 does not exceed (A) 4 (B) 9 (C) 8 (D) 6

If the equation x^2+y^2+2h x y+2gx+2fy+c=0 represents a circle, then the condition for that circle to pass through three quadrants only but not passing through the origin is f^2> c (b) g^2>2 c >0 (d) h=0

The non zero vectors veca,vecb, and vecc are related byi veca=8vecb nd vecc=-7vecb. Then the angle between veca and vecc is (A) pi (B) 0 (C) pi/4 (D) pi/2