Home
Class 12
MATHS
veca=hati-hatj+hatk and vecb=2hati+4hati...

`veca=hati-hatj+hatk and vecb=2hati+4hati+3hatk` are one of the sides and medians respectively of a triangle through the same vertex, then area of the triangle is (A) `1/2 sqrt(83)` (B) ` sqrt(83)` (C) `1/2 sqrt(85)` (D) `sqrt(86)`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca=4hati+3hatj+2hatk and vecb=3hati+2hatk , find |vecbxx2veca|

The vector vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are sides of a triangle ABC. The length of the median through A is (A) sqrt(18) (B) sqrt(72) (C) sqrt(33) (D) sqrt(288)

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be

If the vectors (hati+hatj+hatk) and (3 hati+ 2 hatj) form two sides of a triangle, then area of the triangle is :

If vecA=3hati+hatj+2hatk and vecB=2hati-2hatj+4hatk , then value of |vecA X vecB| will be

If the vectors vec(PQ)=-3hati+4hatj+4hatk and vec(PR)=5hati-2hatj+4hatk are the sides of a triangle PQR, then the length o the median through P is (A) sqrt(14) (B) sqrt(15) (C) sqrt(17) (D) sqrt(18)