Home
Class 12
MATHS
If veca, vecb, vecc are unit vectors, th...

If `veca, vecb, vecc` are unit vectors, then `|veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2` does not exceed `(A) 4 (B) 9 (C) 8 (D) 6`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2+|vecc^2-veca^2|^2 does not exceed (A) 4 (B) 9 (C) 8 (D) 6

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then find the value of " |2veca+ 5vecb+ 5vecc|

If veca,vecb,vecc are non coplanar vectors then ([veca+2vecb vecb+2cvecc vecc+2veca])/([veca vecb vecc])= (A) 3 (B) 9 (C) 8 (D) 6