Home
Class 12
MATHS
Find the cosine of the angle between the...

Find the cosine of the angle between the planes` vecr.(2veci-3vecj-6veck)=7` and `vecr.(6veci+2vecj-9veck)=5`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between planes vecr.(veci+vecj)=1 and vecr.(veci+veck)=3 .

If a vector vecr of magnitude 3sqrt6 is directed along the bisector of the angle between the vectors veca =7veci-4vecj -4veck and vecb = -2veci- vecj+ 2veck , then vecr is equal to

Find the angle between the planes vecr.(hati+hatj-2hatk)=3 and vecr.(2hati-2hatj+hatk)=2 2

The angle between the planes vecr.(2hati-hatj+hatk)=6 and vecr.(hati+hatj+2hatk)=5 is

The angle between the planes vecr. (2 hati - 3 hatj + hatk) =1 and vecr. (hati - hatj) =4 is

Find the vector equation of the line through the points 2veci+vecj-3veck and parallel to vector veci+2vecj+veck

Find the equation of the plane through the point 2veci+3vecj-veck and perpendicular to the vector 3veci-4vecj+7veck .

Find the equation of the plane through the 2veci+3vecj-veck and perpendicular to the vector 3veci+2vecj-2veck . Determine the perpendicular distance of this plane from the origin.

Find the equation of the plane through the point 2veci-vecj+veck and perpendiulr to the vector 4veci+2vecj-3veck . Determine the perpendicular distance of this plane from the origin.

Find the distance between the parallel planes vecr.(2hati-3hatj+6hatk) = 5 and vecr.(6hati-9hatj+18hatk) + 20 = 0 .