Home
Class 12
MATHS
Show that the perpendicular distance of ...

Show that the perpendicular distance of any point `veca` from the line `vecr=vecb+t vecc is (|(vecb-veca)xxvecc)|/(|vecc|)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The perpendicular distance of the point vecc from the joining veca and vecb is

A line l is passing through the point vecb and is parallel to vector vecc . Determine the distance of point A( veca) from the line l in from |vecb-veca+((veca-vecb)vecc)/(|vecc|^(2))vecc|or (|(vecb-veca)xxvecc|)/(|vecc|)

Show that the plane through the points veca,vecb,vecc has the equation [vecr vecb vecc]+[vecr vecc veca]+[vecr veca vecb]=[veca vecb vecc]

If veca, vecb,vecc are unit vectors such that veca is perpendicular to the plane of vecb, vecc and the angle between vecb,vecc is pi/3 , then |veca+vecb+vecc|=

If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

Show that the equation of as line perpendicular to the two vectors vecb and vecc and passing through point veca is vecr=veca+t(vecbxxvecc) where t is a scalar.

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0