Home
Class 12
MATHS
Find the volume of the parallelopiped wh...

Find the volume of the parallelopiped whose thre coterminus edges asre represented by `vec(2i)+vec(3j)+veck, veci-vecj+veck, vec(2i)+vecj-veck`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=11 hat i ,\ vec b=2 hat j ,\ vec c=13 hat k .

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2 hat i-3 hat j+4 hat k ,\ vec b= hat i+2 hat j- hat k ,\ vec c=3 hat i- hat j-2 hat k .

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: i, vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k ii, vec a=2 hat i-3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k iii, vec a=11 hat i , vec b=2 hat j , vec c=13 hat k iv, vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a= hat i+ hat j+ hat k ,\ vec b= hat i- hat j+ hat k ,\ vec c= hat i+2 hat j- hat k .

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2 hat i+3 hat j+4 hat k ,\ vec b= hat i+2 hat j- hat k ,\ vec c=3 hat i- hat j+2 hat k .

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

If vec(a) = 2hat(i) - 3 hat(j) + 4 hat (k), b = vec(i)+2vec (j) -hat(k),vec(c ) = 3 hat(i) - hat(j) -2 hat(k) , then the volume ( in cubic units) of the parallelopiped with coterminous edges vec(a) + vec(b) , vec(b) + vec(c ) , vec(c ) + vec( a) is

Let vec a=2 hat i-3 hat j, vec b= hat i+ hat j- hat k and hat c=3 hat i- hat k , then the volume of parallelepiped whose three edges are vec aX vec b, vec bX vec c and vec cX vec a , is (1)9 (2)4 (3)16 (4)14 (5)7

The value ( in cubic units ) of the parallelopiped whose coterminus edges are given by the vectors vec(i)-vec(j)+hat(k),2hat(i)-4hat(j)+5hat(k) and 3 hat(i) -5 hat(j) + 2hat(k) is

Given two vectors vec(A)=3hat(i)+hat(j)+hat(k) and vec(B)=hat(i)-hat(j)-hat(k) .Find the a.Area of the triangle whose two adjacent sides are represented by the vector vec(A) and vec(B) b.Area of the parallelogram whose two adjacent sides are represented by the vector vec(A) and vec(B) c. Area of the parallelogram whose diagnoals are represented by the vector vec(A) and vec(B)