Home
Class 12
MATHS
Show that the points whose position vect...

Show that the points whose position vectors are `veca,vecb,vecc,vecd` will be coplanar if `[veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the perpendiculasr distanceof as point with position vector veca from the plane thorugh three points with position vectors vecb,vecc, vecd is ([veca vecc vecd]+[veca vecd vecb]+[veca vecb vecc]-[vecb vecc vecd])/(|vecbxxvecc+veccxxvecd+vecdxvecb|)

If the vectors veca, vecb, vecc, vecd are coplanar show that (vecaxxvecb)xx(veccxxvecd)=vec0

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

Statement 1: veca, vecb and vecc arwe three mutually perpendicular unit vectors and vecd is a vector such that veca, vecb, vecc and vecd are non- coplanar. If [vecd vecb vecc] = [vecdvecavecb] = [vecdvecc veca] = 1, " then " vecd= veca+vecb+vecc Statement 2: [vecd vecb vecc] = [vecd veca vecb] = [vecdveccveca] Rightarrow vecd is equally inclined to veca, vecb and vecc .

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 and veca.vecb\'=veca.vecc\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca vecb vecc] (C) 3[veca vecb vecc] (D) 0

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

Prove that [lambda veca +mu vecb" "vecc" "vecd]=lambda [veca" "vecc" "vecd]+mu[vecb" "vecc" "vecd] .

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=