Home
Class 12
MATHS
Prove that: vecaxx[vecbxx(veccxxveca)]=(...

Prove that: `vecaxx[vecbxx(veccxxveca)]=(veca.vecb)(vecaxxvecc)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that vecaxx{vecbxx(veccxxvecd)}=(vecb.vecd)(vecaxxvecc)-(vecb.vecc)(vecaxxvecd)

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc) = -2[vecb vecc vecd] veca

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

Prove that (veca+3vecb)xx(veca+vecb)+(3veca-5vecb)xx(veca-vecb)=0

Prove that (vecaxxvecb)^(2)= |(veca.veca" "veca.vecb),(veca.vecb" "vecb.vecb)|

Prove that vecaxx(vecb+vecc)+vecbxx(vecc+veca)+veccxx(veca+vecb)=0