Home
Class 12
MATHS
For two vectors veca and vecb,veca,vecb=...

For two vectors `veca and vecb,veca,vecb=|veca||vecb|` then (A) `veca||vecb` (B) `veca_|_vecb` (C) `veca=vecb` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors veca and vecb prove that |veca.vecb|<=|veca||vecb|

If vecasxxvecb=0 and veca.vecb=0 then (A) veca_|_vecb (B) veca||vecb (C) veca=0 and vecb=0 (D) veca=0 or vecb=0

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc and veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

For any two vectors veca and vecb prove that |veca+vecb|lt+|veca|+|vecb|

If |veca+vecb|=|veca-vecb| show that veca_|_vecb .

If |veca|=|vecb| , then (veca+vecb).(veca-vecb) is equal to

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

The vector veca+vecb bisects the angle between the vectors hata and hatb if (A) |veca|+|vecb|=0 (B) angle between veca and vecb is zero (C) |veca|=|vecb|=0 (D) none of these

Find |veca| and |vecb| if (veca+vecb).(veca-vecb)=8 and |veca|=8|vecb|.

Find |veca|and |vecb|, if (veca+vecb).(veca-vecb) =8 and |veca|=8|vecb|